An IP-Based Software System for Real-time, Closed Loop, Multi-Spacecraft Mission Simulations

Everett Cary, George Davis, John Higinbotham

Emergent Space Technologies

Richard Burns

NASA Goddard Space Flight Center

Keith Hogie, Francis Hallahan Computer Sciences Corp.

Agenda

- Introduction
- Formation Flying Test Bed
- Distributed Space Systems Distributed Synthesis Environment
- FY02 Prototyping and Demonstration Activities
- FY03 Development and Test Activities
- FY04 and Beyond
- Concluding Remarks

Introduction

Distributed Space Systems

- Encompasses Formations, Constellations, and Sensor Webs
- Technical Challenges
 - Precise Relative Navigation and Attitude Control
 - Coordinated Control of Space and Ground Assets
 - Inter-spacecraft Ranging and Communications
 - Libration Point and Highly Elliptical Orbit Regimes
 - Coordinated data collection, routing, processing and downlink

Requirements for DSS Simulation and Modeling

- High Fidelity Dynamics and Reference Frames
- Realistic Modeling of Error Sources
- Distributed Networking and Computing
- Hardware-in-the-Loop Testing

NASA Formation Flying Challenges

Formation Flying Testbed (FFTB)

- Focus is on GN&C challenges
- Hybrid Dynamic Simulator for:
 - Technology Development
 - Algorithms
 - Hardware
 - Mission Planning and Analysis
 - Simulation and Test
- Hardware-in-the-Loop
 - GPS Receivers
 - Interspacecraft Ranging and Comm
 - Celestial Navigation
- Operational Modes
 - Real-Time
 - Faster-than-Real-Time
 - Slower-than-Real-Time
 - Open-Loop/Closed-Loop Control
- Visualization
 - STK for mission animation
 - Real-time plotting for simulation analysis and monitoring

FFTB Schematic

- Generates spacecraft trajectories, x_i
 - integrates differential equations of motion
 - high fidelity force models
- Accepts control inputs, u (e.g., thrusts)

DSS-DSE

End-to-End Mission Simulation for Distributed Space Systems

- Integrate existing GSFC test beds for a virtual mission simulation capability
- Science Instrument, Spacecraft Subsystems, Ground Systems, Autonomy all represented in an coordinated, interdependent simulation
- Provides capability to assess effect of mission/system/subsystem level trades on the end product, Science Data

Envisioned as a tool for DSS missions:

- Mission Design and Planning, including formation & constellation design
- Spacecraft Design
- Feasibility Analysis
- Autonomous Operations

DSS-DSE Concept Diagram

Completed IR&D Activities

- Establish interfaces across GSFC engineering mission resources for simulation and analysis
 - Focus on accessing simulation resources across campus without having to colocate or modify the direction of resource
 - Simulation resource can support existing responsibilities and activities.
 - Enable resources to tie into DSE and other mission elements for higher level analysis when needs arise
- Support MMS reference mission goals
 - Develop a simulated model of elements supporting, Science Data Simulation, Formation Flying, Space - Ground Communication, Flight Dynamics.
 - Support initial framework for evaluation of ranging mechanisms and further evaluation
 - Provide first steps of an environment that could be used to explore, refine and validate Operations Concepts.

DSE Distributed Test Beds

Development and Test Activities

Infrastructure

- Redesign and develop FFTB software as distributed, middleware-enabled, object-oriented simulation system
- Integrate FFTB software with telemetry simulator (SIMMS) for more robust DSS simulation capability
- Design and develop GUI for easy-to-use controller of the FFTB software
- Implement Cross-Link Channel Simulator for Inter-spacecraft Ranging and Communications HWIL Testing Support
- Address Timing (e.g., latency, synchronization ...) and Security Issues

Demonstrations

- Real-Time, Closed-Loop Control
- Relative Navigation and Control
- Inter-spacecraft Ranging
- Target Mission Simulation and Test Support: GPM, MMS, TechSat-21

Concluding Remarks

- The FFTB and the DSS-DSE exploit Internet technology to support end-to-end mission simulations:
 - GN&C
 - Instruments
 - Communication Networks
 - Ground Systems
 - Automation and Autonomy

Successes to Date

- Successfully integrated simulation and test resources across GSFC and across country for meaningful end-to-end simulation
- Enabling meaningful dataflow of simulated science, telemetry across
 GSFC networks for trade studies
- Defines framework for adding other elements and change of specifications through an ICD

